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Abstract—Federated learning (FL) is a paradigm that trains
models on data across distributed clients and aggregates the local
models on a central server. FL is important because it prevents
private data from being shared with others and obviates the need
for a large centralized dataset. However, two main difficulties
remain for FL to be addressed: 1) non-iid datasets, and 2)
label deficiency. Contrastive learning is a self-supervised learning
(SSL) paradigm aiming to learn meaningful representations
without needing adequately annotated raw data. In this work, we
present a personalized contrastive federated learning model to
tackle the above challenges. The core of the proposed method
is to introduce a regularizer into the loss function of each
client to minimize the distance between local model and global
model. We employ this personalized federated learning method
(PFL) to the existing contrastive learning frameworks including
SimCLR, BYOL, and SimSiam in the pre-training process. Then,
we measure the performance by linear evaluation. Experiments on
various datasets like CIFAR-10 and CIFAR-100 are conducted to
reaffirm and validate some previous results without a regularizer
to delve deeper into the insights of FL-SSL. Moreover, we
compare the results with and without a regularizer, and discover
that our PFL method can slightly improve the accuracy. We delve
into this finding in the discussion section, and we hope this paper
will provide useful insights for future research.

Index Terms—Federated learning, contrastive learning, data
heterogeneity.

I. INTRODUCTION

FEDERATED learning (FL) is a distributed framework in
which datasets are trained locally, and the results on each

device are combined together to form a generalized model
[1]. In a typical FL model FedAvg [1], the local training and
aggregation process repeats round-by-round on each decen-
tralized client until convergence. In one of the rounds, the
server selects part of the clients, informs them of the latest
model, and performs stochastic gradient descent (SGD) to
update the model’s parameters. While traditional FL shows
stronger generalizability and attains better performance in
fields with distributed and data privacy setting such as medical
applications [11], FL still faces certain serious challenges. An
inevitable and practical challenge is the data heterogeneity
problem, also known as non-iid (identically and independently
distributed) data. The main non-iid data types can be summa-
rized as follows: covariate shift, prior probability shift, concept
shift, unbalancedness, etc. Non-iid data is almost ubiquitous
in real-life circumstances. For example, a prior probability
shift can occur when datasets containing images of flora vary

significantly from region to region; large hospitals having more
patient data than local clinics can result in unbalanced datasets
[5]. Some efforts have been made by current research to tackle
the problem of non-iid (out of distribution) data via agent
clustering, where FOCUS (based on expected-maximization
algorithm) is proposed [7]. In the research, however, data used
for training was annotated, upon which the state-of-the-art
supervised convolutional neural networks (CNN) is based [12].
Unfortunately, labels do not always exist in many practical
applications. Street cameras and personal phones, for instance,
are generating an enormous amount of unlabeled images with
high privacy requirements [8].

Recently developed methods like FedU based on self-
supervised learning (SSL) can learn meaningful representa-
tions from unlabeled data [16]. The current SSL approaches
mainly belong to two categories: contrastive learning and
non-contrastive (generative) learning. Non-contrastive learn-
ing methods, such as masked autoencoder and adversarial
learning [17][18], learn representations via generating pixels
for mapping. One recent work uses a generative adversarial
network (GAN) to generate pseudo images and applies FL-
SSL where the results are promising [13]. But another gener-
ative method–masked autoencoder–seems even more powerful.
Transformer has become an important approach in natural
language processing (NLP) [21], recently being applied to
computer vision tasks [2]. Vision Transformers (ViT) shows
its superior performance on image classification problems
compared to CNN-based frameworks [19]. Due to the good
performance of ViT-based masked autoencoder (MAE), in
which partial patches of the input images are masked to
train an encoder and decoder among clients collaboratively,
researchers have incorporated this framework into federated
learning [5][8]. Nevertheless, one existing challenge for this
method is its high computational cost, which is not applicable
in some circumstances.

This paper mainly focuses on contrastive learning, which
is suitable for computation-contrained devices. Contrastive
learning frameworks like SimCLR learn visual representations
by maximizing agreement between positive pairs while min-
imizing the disagreement among negative pairs [3]. More-
over, BYOL and SimSiam only contrast among positive pairs
[14][15]. Built upon the basic framework of contrastive learn-
ing [20], some recent research works combine contrastive
SSL with FL to address data heterogeneity on tasks in
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Fig. 1: Federated learning based on the simple framework of contrastive learning (SimCLR). In the pre-training stage, two
separate data in client k are first augmented randomly. The augmented data will then be used to learn a base encoder network
fk and a projection head gk that maximizes the agreement between zi and zj using a contrastive loss. Upon completion of
training, the projection head will be discarded, and only the encoder network will be maintained and applied to the downstream
classification tasks.

CIFAR-100 and acoustic events [4][9][10]. Contrastive self-
supervised learning has relatively low computational cost [6],
but smaller decentralized datasets may significantly impact the
performance compared with the larger ones . FedCLF further
improves unbalancedness through feature-sharing [6]. In this
paper, we introduce a regularizer into the loss function of
SimCLR, BYOL, and SimSiam in a federated-learning setting,
and evaluate its performance on datasets including CIFAR-10
and CIFAR-100.

II. METHODOLOGY

A. Problem

This paper proposes a framework that performs collab-
orative contrastive pre-training on non-iid clients and then
fine-tunes the model. Suppose there are in total N clients in
which each client k ∈ {1, ..., N} has a local dataset Dk.
Our goal is to learn a global SSL model over each dataset
Dk, k ∈ {1, ...N}. The global loss function can be defined
as follows:

L(w) =
N∑
k=1

|Dk|
|D|
Lk(w), (1)

where w denotes the global parameters to be learned. Since
we aim to train and test our framework on non-iid data, Dm
and Dn (m 6= n) follow different distributions Pm(x, y) and
Pn(x, y). Furthermore, our focus is on unlabeled data, i.e.,
data in client k can be partitioned into Dkl and Dku, representing

labeled and unlabeled part of the dataset respectively. The local
empirical loss function is defined in the following way:

Lk(w) = Ex∼Dk
[lk(w;x)], (2)

in which lk is the loss function of client k, and w stands for
the global model parameters to be learned.

To tackle the challenge of data heterogeneity under the
setting of federated learning, we first compare the performance
of the current contrastive methods including SimCLR, BYOL,
and SimSiam. Then, we explore and propose an improved
version of the framework by introducing a regularizer into the
loss function. We take SimCLR as an example, and a general
flow of the framework is shown in Fig 1. The framework
consists of two stages: a self-supervised federated pretraining
stage and a supervised fine-tuning stage. In the first stage,
the local models are individually trained on the distributed
clients, and then are aggregated via FedAvg to obtain a global
model. In each round of local training, different data are
augmented and trained through an encoder network and an
MLP to maximize the similarity between same data while
minimize the dissimilarity among distinct data paris. In the
second stage, the knowledge is transferred from the previous
stage to the downstream task by fine-tuning the federated
models. The flows for BYOL and SimSiam are similar except
that the pretraining is slightly different, which will be covered
in the next section.
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Fig. 2: Framework of BYOL Fig. 3: Framework of SimSiam

B. Pre-training

In the pre-training stage, the framework of SimCLR, BYOL,
and SimSiam basically comprises primarily five components
before fine-tuning.

1) Data Augmentation: For a given data sample x, it is
first passed through a stochastic data augmentation opera-
tor generating a positive pair, denoted as xi and xj . Data
augumentation operators inlcude random crop, resize, color
jitter, Gaussian noise, and Gaussian blur. The same procedure
is applied to other data samples forming different positive
pairs. Note that for SimCLR particularly, if two augmented
data do not form a positive pair, they will together become a
negative pair. For BYOL and SimSiam, we do need negative
pairs in the loss function. Although studies have shown that
augmentation composition such as random crop and color jitter
can improve representation learning of the encoder network
[3], we use random augmentation generators here for a more
general situation.

2) Encoder Training: The encoder f is based on a neural
network that learns representations from augmented data sam-
ples. This paper mainly adopts ResNet [23] as the backbone
of our encoder network. More specifically, hi = fk(xi) =
ResNet(xi), where hi ∈ Rd is the output of the network.

As for SimCLR, we apply the same ResNet to the augmented
images Xi and Xj , and maximize the similarity after feeding
the learned representations to the MLP layer, as indicated in
Fig 1. Then, we perform backpropagation and gradient descent
algorithm on both sides of Xi and Xj .

For BYOL, the encoder f indirectly shares weights between
the two views. From a given target representation, we train
a new online representation by predicting the target represen-
tation. The target encoder is obtained by exponential average
moving of the online network, which is different from the
trained target encoder in SimCLR, making the architecture
asymmetric between the online and target pipeline.

The flow of SimSiam is similar to that of BYOL, except that

its encoder network shares weights directly with the target
encoder without an exponential moving average. A simple
illustration of BYOL and SimSiam can be found in Fig. 2.
and Fig. 3 respectively.

3) MLP Predictor: The extracted representation is then fed
into an MLP projection head, which is a small neural network
projection head g that maps to the contrastive loss function.
A simple MLP structure can be modeled as zi = g(hi) =
W (2)σ(W (1)hi) where σ is a non-linear function such as
ReLU.

4) Contrastive Loss: For SimCLR, given two l2 normalized
representation vector u and v, define the agreement between
them as cosine similarity, i.e., sim(u, v) = uT v/||u|| ||v||.
The loss function for a positive pair of examples (i, j) is then
defined in the following way,

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1k 6=iexp(sim(zi, zk)/τ)
(3)

where 1[k 6=i] ∈ {0, 1} is an indicator function evaluating to
1 if and only if k 6= i and τ represents a temperature hyper-
parameter. If τ is small, the model will pay more attention to
negative pairs [3].

Since we do not incorporate negative pairs in BYOL, and a
stop-gradient approach is applied to the target branch, the loss
function is slightly different from that of SimCLR. Suppose
that v and v′ are two augmented views from the same image.
The online network outputs a representation yθ = fθ(v)
and a projection zθ = gθ(y). The target encoder outputs
y′ξ = fξ(v

′) and the target projection z′ξ = gξ(y
′) from the

second augmented view v′. Here, θ and ξ are parameters of
the online network and the target network respectively. The
target network has the same architecture as the online network,
and its parameters ξ are an exponential moving average of θ.
After each training step, the following update is performed:

ξ ← τξ + (1− τ)θ (4)
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Fig. 4: Experiments on CIFAR-10 without Regularizer Fig. 5: Experiments on CIFAR-100 without Regularizer

given a target decay rate τ ∈ [0, 1].
After that, the representation from the online branch is fed

into a predictor whose result is qθ(zθ). The loss function aims
to minimize the mean square error between l2-normalized
qθ(zθ) and z′ξ. The formula is shown as follows:

Lθ,ξ = 2− 2 ·
〈qθ(zθ) , z′ξ〉

||qθ(zθ)||2 · ||z′ξ||2
(5)

In the framework of SimSiam, the encoder f shares weights
directly with the two branches. In other words, it does not use
a momentum target encoder.

5) Aggregation: Once each local client has learned its
parameters at round T, the central server will update the global
model through FedAvg,

wt+1 ←
K∑
k=1

|Dk|
| ∪Dk|

wkk+1 (6)

C. Fine-tuning & Linear Evaluation

In the fine-tuning stage of federated learning, client k with
its local encoder initialized as the global encoder pre-trained
in the first stage is appended to a classifier. The model is
fine-tuned based on the local data Dk

l in a federated setting
similar to the previous stage. The representations learned by
the model are fed into a linear classifier to minimize the cross
entropy loss:

J(W ) = − 1

m

m,C∑
i,j

[I(yi = j)log(fwj ,bj (xi))] (7)

where f corresponds to the softmax function:

fwj ,bj (x) =
exp(wᵀ

j x+ bj)∑
c exp(w

ᵀ
c x+ bc)

(8)

in which w, b are parameters to be tuned. Fine-tuning can
achieve better performance in transfer learning [14], but in
this paper, we mainly adopt linear evaluation to measure
performance.

D. Preliminary Experiments
1) Datasets: We perform basic federated learning exper-

iments on SimCLR, along with other two recently proposed
contrastive learning methods which are BYOL and SimSiam.
We partition the datasets to 5 clients according to their labels.
This way of partitioning can simulate label-skew non-iid data.
For CIFAR-10, the number of classes in a client is 2 in our
experiments, while the number of classes per client for CIFAR-
100 is set to 20.

2) Setup: The model is trained on NVIDA GeForce RTX
2080. We use ResNet-18 as default encoder network. The
projection head used is a two-layer multi-layer perceptron
(MLP). During training, we set R = 200 rounds with K = 5
clients, E = 5 local epochs, batch size B = 128, and
η = 0.032 with cosine decay.

3) Test in Server: Once we obtain the global model each
10 rounds, we will test the accuracy on a set of centralized
data samples. The data samples are not distributed accross the
clients, which is different from Test in Client as we shall see
in the experiments of PFL.

4) Preliminary Results: Results of the three models on
CIFAR-10 and CIFAR-100 are shown in Fig 2, Fig 3, and
Table 1. As shown in the figures and table, federated learning
based on SimCLR and BYOL performs better than SimSiam.
For CIFAR-10, FedSimCLR and FedBYOL achievem 76.30%
and 75.26% respectively, about 4% higher than FedSimSiam.
Nevertheless, FedSimCLR and FedBYOL only achieve about
54% accuracy on CIFAR-100, which contains more classes
and data samples, introducing more complexity and potential
non-iid property to the data.

TABLE I: Test Accuracy without Regularizer

Method CIFAR-10 (%) CIFAR-100 (%)
FedSimCLR 76.30 54.16
FedBYOL 75.26 53.47
FedSimSiam 71.08 43.59

E. Algorithm Proposed
To improve the performance of the three contrastive feder-

ated learning schemes and tackle the non-iid data, we will im-
prove the general framework by introducing a regularizer into
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each local loss function. More specifically, we will consider
each local client separately and optimize each local model
with parameters {vk0}k∈K and local objective lk(vk) [22]. The
optimization problem in each client can be summarized as
follows:

minvk hk(v
k;w∗) := lk(v

k) +
λ

2
||vk − w∗||2 (9)

where w∗ is the global model obtained from last round. The
algorithm is illustrated as follows. The K clients are indexed
by k; B is the local batch size, E is the number of local
epochs, and η is the learning rate. Here, we introduce a
parameter vk for each client, which is the local model in the
client.

Algorithm 1 Personalized Contrastive Federated Learning

ServerExecutes:
initialize w0, m, {vk0}k∈K
for each rount t = 1, 2... do

St ← (random set of m clients)
for each client k ∈ St in parallel do

wkt+1 ← ClientUpdate(k,wt)
Update vk for E local iterations: . Run on client k

vkt+1 = vkt − η(∇hk(vkt ;wt))
wt+1 ←

∑K
k=1

nk

n w
k
t+1

ClientUpdate(k,w): . Run on client k
Sample batches B from local data Dk

for each local epoch i from 1 to E do
for batch b ∈ B do

w ← w − η∇l(w; b)
return w to server

III. EXPERIMENT AND RESULTS

We assess the performance of our proposed personalized
contrastive federated learning algorithm by evaluating the
representations learned by SimCLR, BYOL, and SimSiam after
self-supervised pretraining on the training set of CIFAR-10 and
CIFAR-100. We adopt the same partitioning measure as in the
previous section that the dataset is divided by label classes to
simulate the relatively worst case of out of distribution data
samples. Moreover, we compare the test accuracy of the same
contrastive learning framwork but with different regularizer
coefficient, namely λ. More precisely, we choose λ to be 0,
0.1, and 0.5, and analyze how the choice of λ affects the
performance of our algorithm.

One of the intuitions from our proposed Algorithm 1 is that
in each iteration of training, the regularizer aims to minimize
the distance between the local model and the global model. If
we put more emphasis on the regularizer, the global model will
be more affected by the local model. In other words, the model
trained at this moment may achieve better performance if we
evaluate the performance on this client. Hence, we apply Test
in Client approach for evaluation as indicated in Fig 6. In Fig
6., each client first trains locally on Dk

tr and updates its model
to the server. The server then aggregates the local models to

Fig. 6: Illustration of Test in Client for SimCLR

obtain the global model. During testing process, rather than
testing on a centralized dataset, we assess the performance on
client-specific testing data Dk

te. In each iteration, we average
the test accuracy from the result of each client.

Table II shows the result of test accuracy on CIFAR-10.
We find that regularizer can to some extent improve the
performance of FedSimCLR, FedBYOL, and FedSimSiam by
approximately 2%. But we do not see much improvement or
degredation when changing λ from 0.1 to 0.5. Although the
performance of FedSimCLR and FedBYOL are relatively close
to each other, FedBYOL in general outperforms the other two
contrastive federated learning methods, achieving the accuracy
of 79.36% when λ is 0.5.

TABLE II: Test Accuracy (%) of CIFAR-10 with Regularizer

Method λ = 0 λ = 0.1 λ = 0.5
FedSimCLR 76.32 78.64 78.58
FedBYOL 76.24 78.42 79.36
FedSimSiam 71.20 72.36 72.94

Table III shows the result of test accuracy on CIFAR-100.
The introduction of the regularizer also helps to improve the
accuracy by 2% to 3%. The slight adjustment of λ from
0.1 to 0.5 does not see much change in the overall perfor-
mance. Moreover, FedBYOL tends to attain better performance
than FedSimCLR and FedSimSiam, and FedSimSiam does not
achieve a desirable result.

TABLE III: Test Accuracy (%) of CIFAR-100 with Regularizer

Method λ = 0 λ = 0.1 λ = 0.5
FedSimCLR 54.16 56.78 56.86
FedBYOL 54.46 57.55 58.02
FedSimSiam 45.57 47.62 48.54

IV. DISCUSSIONS

Based on the above observations, we further delve into the
architecture of our algorithm, attempting to better understand
personalized contrastive federated learning. Furthermore, we
will point out some issues for future research.

A. Batch Size and Partitioning

When the number of training epochs is small, larger batch
size can have a great benefit for SimCLR [3]. In our ex-
periment, the local batch size is only 128, which may limit
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the encoder network training process. To obtain a better
representation from the online encoder, larger batch sizes such
as 512 and 1024 should be taken into consideration. But larger
batch sizes also indicate longer training procedure, which is
not desirable for tasks with time constraints. But for BYOL,
batch size is not considered to be a major issue [14], because
it does not need negative samples.

We partition the data according to their classes, which is
considerably label-skew. But in real-life situations, the data
samples may not be that label-skew. Hence, it is more practical
to use other ways to partition data samples such as Dirichlet
sampling.

B. Data Augmentation

Contrastive learning methods like SimCLR are sensitive to
the combination of image augmentations. If we get rid of
color distortion in a SimCLR, the performance can drop [3].
So it is important to properly choose the combination of
image augmentations to enhance the representation learning.
Although BYOL and SimSiam are less influenced by the
augmentations, BYOL tends to spend more time training.

C. Regularizer Weight λ

The introduction of the regularizer improves our model
accuracy, but empirically, the optimal λ (the most accurate,
fair, and robust solution) lies around 5 [22]. Furthermore, the
adjustment we make in the experiment may be too small to
capture any significant change. In the future research, one can
adjust λ to even larger values to visualize the influence of this
coefficient.

D. Model Forgetting

In each iteration, we update the testing model with the
global model. After many rounds of training, the local model
may forget its previous model. Thus, keeping track of the
previous models and applying them to the current one are
important to undermine the effect of forgetting.

V. CONCLUSION

This work aims to propose a personalized contrastive fed-
erated learning algorithm to tackle non-iid unlabeled data.
We incorporate the contrastive learning frameworks, including
SimCLR, BYOL, and SimSiam in our pipeline, and evaluate the
test accuracy of them. Clients first pre-train a model from dis-
tributed unlabeled data, and the server aggregate the distributed
models. We use linear evaluation to assess their performance.
By introducing a regularizer into the loss function, the overall
performance enhances slightly. However, due to the small
adjustment to the regularizer coefficient, the results do not vary
too much when λ is 0.1 and 0.5. Nevertheless, the discussion
section provides future researchers useful insights into the
personalized contrastive federated learning.
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