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Abstract—In this work, we developed a hybrid recommen-
dation system for evaluating anime films, which combines col-
laborative filtering and content-based filtering methods. For
collaborative filtering, we apply two existing methods to a new
application scenario (Kaggle Anime Recommendation Database)
to verify the performance and accuracy. Next, we propose a
new content-based method DTAR, specifically targeting on this
dataset, aiming to solve challenges, including complicated data
composition, cold-start problem, and so on. We conduct several
experiments on the dataset and found that our proposed DTAR
method does not differ by the two state-of-the-art algorithms,
while solving the above-mentioned issues.

I. INTRODUCTION

Recommendation systems play a crucial role in suggesting
interest-based contents to users, especially on mobile content
platforms where users rely heavily on recommendations rather
than manual search results. It is generally accepted that
the quality of recommendations significantly affects the user
experience. As reported by [1], the popularity of anime in
China has been steadily growing at an annual rate of 12 to 25
percent since 2017. However, compared to short-form videos
on platforms like TikTok and Instagram, anime often lacks
sufficient user preference data, making it challenging to build
an effective recommender.

Our research aims to address this challenge by building
two separate recommendation systems using content-based
filtering and collaborative filtering techniques.

In terms of Collaborative Filtering algorithms, a recommen-
dation system was developed leveraging the robust capabilities
of the Neural Collaborative Filtering (NCF) methodology.
NCF, an innovative approach to recommendation systems, cap-
italizes on the power of deep neural networks to extract user-
item interaction patterns, providing a more nuanced apprecia-

tion of these interactions than traditional matrix factorization
methods [4]. The model’s performance demonstrated the ef-
ficiency and effectiveness of NCF in capturing the intricacies
of user-item interactions and highlighting its superiority over
traditional methods. Furthermore, the project underlines the
potential of AI in revolutionizing content delivery systems,
in line with findings by Koren & Bell [5]. This application
of NCF in the anime sector underscores the versatility and
adaptability of AI in various domains, setting a precedent for
future AI-driven recommendation systems.

Different from the Collaborative Filtering method which
primarily makes predictions based on similar anime-watching
patterns between users, the content-based method makes use of
anime-specific information to make predictions. For example,
if user A is fond of watching horror animes, then user A is
more likely to receive horror animes recommendations rather
than ecchi animes.

Many other recommendation algorithms have emerged over
the years, demonstrating unique methodologies and promising
capabilities. The Deep Knowledge-Aware Network (DKN) is
one such model, which incorporates knowledge graphs to
account for complex item relations, improving the accuracy
of item recommendations [7]. It uses an entity embedding
method to represent entities and relations, allowing for a more
thorough understanding of items in relation to one another.
FastAI’s Embedding Dot Bias (FAST) model, on the other
hand, introduces an additional bias term to the traditional
matrix factorization approach, accounting for user and item
biases that can significantly affect the rating process [6]. The
bias term reflects any systematic tendencies for some users
to give higher or lower ratings than the average, and some
items to receive higher or lower ratings. This attention to



detail enhances the precision of recommendations. These are
just a few of the many innovative recommendation algorithms
shaping the future of personalized content delivery systems.

In this project, we first evaluate and compare the effective-
ness of the existing collaborative filtering methods, namely
ALS and NCF. Furthermore, propose a new content-based
method DTAR, which particularly targets at the Kaggle Anime
Dataset. Experiments are conducted to assess this method
under different settings to test the robustness as well as
accuracy. Last but not least, we apply Borda-Count voting
technique in the end to combine the results from different
methods.

The novelty and contribution of our project can be sum-
marized as follows:

1) Perform meticulous data pre-processing techniques, such
Adaboost.SVR on the dataset.

2) Propose a novel content-based method (DTAR), in which
the user’s specific preference and general trends are
taken into consideration. We devise a special weight
parameter to add them together.

3) We apply Bayesian rating in the last point as common
rating.

4) Adaboost.SVR is applied to address the cold-start prob-
lem and attains relatively good performance.

5) By applying Borda-count voting method, we combine
the result of the three algorithms (ALS, NCF, DTAR)
into a hybrid answer.

II. METHODS

A. Collaborative Filtering

Collaborative Filtering (CF) is a machine-learning technique
commonly used in recommender systems. It is a method of
making automatic predictions (filtering) about the interests of a
user by collecting preferences or taste information from many
other users (collaborating).

The basic idea behind CF is that if two users have similar
preferences or tastes in certain items, they are likely to have
similar preferences in other items as well. Thus, the algorithm
attempts to find patterns in how users interact with items and
use these patterns to make recommendations.

In the following parts of this section, we will first introduce
the matrix factorization for CF problems, and then demonstrate
two CF algorithms: Alternating Least Square (ALS) and
Neural Collaborative Filtering (NCF).

1) Matrix Factorization for Collaborative Filtering: Ma-
trix factorization is widely used in recommendation tasks.
Essentially, this technique seeks to identify hidden factors that
represent intrinsic attributes of users and items in a lower
dimension. That is,

r̂u,i = qTi pu (1)

where r̂u,i is the predicted ratings for user u and item i, and
qTi and pu are latent factors for item and user, respectively. The
CF algorithms are designed to find qTi and pu that generate the
ratings as close to the observed ratings as possible. To avoid

overfitting, a regularization term is introduced. The regularized
formula is given by the following,

min
∑

(ru,i − qTi pu)
2 + λ(||qi||2 + ||pu||2) (2)

where λ is a the regularization parameter.
2) Alternating Least Square Algorithm: Due to the term

qTi pu in the loss function, it is non-convex and applying
gradient descent method can be computationally expensive.
To address this issue, the Alternating Least Squares (ALS)
algorithm was developed.

The fundamental concept of ALS is to optimize one of the
latent factors q or p at a time while keeping the other factor
constant. By doing so, the objective becomes convex and can
be solved at each iteration efficiently. The alternating between
q and p stops when there is convergence to the optimal.

3) Neural Collaborative Filtering Algorithm: Traditional
collaborative filtering techniques such as matrix factorization
often assume a linear relationship between user and item latent
factors. However, in real-world scenarios, the relationship
between users and items can be highly nonlinear. Traditional
matrix factorization methods can struggle to capture complex
patterns in the data due to their linear nature. To eliminate
these limitations, the NCF algorithm fuses Generalized Matrix
Factorization (GMF) and Multi-Layer Perceptron (MLP).

The GMF model utilizes an element-wise product to en-
able a more expressive representation, thus allowing NCF to
capture more complex patterns in the data.

r̂u,i = aout
(
hT (qi ⊙ pu)

)
(3)

Where the ⊙ is the element-wise product of vectors. aout
and h stand for the activation function and edge weights of
the output layer respectively.

Also, to obtain a high-level representation of the user-item
interaction, the MLP component takes the concatenation of
user and item latent factors as input and passes it through
multiple hidden layers. For the input layer, there is the
concatenation of user and item vectors:

z1 = ϕ1 (pu, qi) =

[
pu
qi

]
(4)

For the hidden layers and output layer of MLP, the details
are:

ϕl (zl) = aout
(
WT

l zl + bl
)
, (l = 2, 3, . . . , L− 1) (5)

r̂u,i = σ
(
hTϕ (zL−1)

)
(6)

In equation (5), Wl, bl, and aout respectively denote the
weight matrix, bias vector, and activation function for the l-th
layer’s perceptron. When selecting activation functions for the
MLP layers, there are various options to choose from, such
as sigmoid, hyperbolic tangent (tanh), and Rectifier (ReLU).
Given that the problem at hand is a binary classification task,
the output layer’s activation function is set to be a sigmoid



Fig. 1. An illustration of content-based method to predict the ratings of unwatched animes of an user. In the figure, xi denotes the preprocessed feature
vector for some anime i, and sim(xi, xj) denotes the cosine similarity between feature vectors xi and xj . Our goal is to predict ratings for unrated
animes, e.g., rj , based on user-specific rating and the common rating rcommon

j , obtained from Adaboost.SVR. For the unrated anime j in the above figure,
wsum =

∑
i∈A sim(xi, xj)ri, in which A is the set of rated animes for that user.

function, ensuring that the predicted scores fall within the
range of (0,1).

NCF combines the GMF and MLP by concatenating the last
hidden layer of them.

r̂u,i = σ

(
hT

[
ϕGMF

ϕMLP

])
(7)

Where ϕGMF and ϕMLP are obtained as follows,

ϕGMF
u,i = pGMF

u ⊙ qGMF
i (8)

ϕMLP
u,i = aout

(
WT

L (Ω)
)
+ bL. (9)

where Ω = aout

(
. . . aout

(
WT

2

[
pMLP
u

qMLP
i

]
+ b2

)
. . .

)
.

The likelihood function is defined as

P
(
R,R−|P,Q,Θ

)
=

∏
(u,i)∈R

r̂u,i
∏

(u,j)∈R−

(1− r̂u,j) (10)

Where R represents the set of observed interactions, and R−

signifies the set of negative instances. P and Q refer to the
latent factor matrices for users and items, respectively, while
Θ represents the model parameters. By taking the negative
logarithm of the likelihood, we derive the objective function
to be minimized for the NCF method, commonly referred to
as binary cross-entropy loss

L = −
∑

(u,i)∈R∪R−

ru,i log r̂u,i + (1− ru,i) log (1− r̂u,i)

(11)

B. Content-Based Algorithm: DualTaste Anime Recommender

In this section, we present the details of our content-based
recommendation algorithm (DTAR) for predicting user ratings
for anime. The proposed algorithm predicts the rating by
combining user-specific and common rating components. We
use two separate models, f(user, anime) and g(anime), to
compute these components. Below, we describe the algorithm
and its components in detail, along with the associated math-
ematical formulations.

Fig. 2. An example of anime recommendation on Bilibili. In this screenshot,
the latter two animes are rated, while the first two animes are unrated which
is not desirable when making predictions.

1) User Rating: The user rating component,
User Rating(user, anime), is computed using a cosine
similarity based method. Given an input anime, we first
represent it as a feature vector. We then compute the cosine
similarity between this vector and the feature vectors of all
the animes that the user has previously rated. This results in a
similarity matrix, which we multiply with the corresponding
user ratings for these animes to obtain the user rating
component.

Mathematically, let vi denote the feature vector of anime
i, and ruser,i denote the user rating for anime i. The cosine
similarity between the input anime a and each historical anime
i is given by:

Cosine Similarity(a, i) =
va · vi

|va||vi|
(12)

The user rating component for the input anime a is then
computed as follows:

User Rating(user, a) =
n∑

i=1

Cosine Similarity(a, i) · ruser,i

(13)
where n is the total number of animes rated by the user.
2) Common Rating: Public rating, also known as common

rating, plays a critical role in our model to predict the user
rating given an un-watched anime. However, in many real-life



applications such as Bilibili, ratings are not always visible
or provided as the Fig 2 shows. To tackle this challenge,
we apply Support Vector Regressor (SVR), along with the
classical boosting algorithm Adaptive Boosting (Adaboost),
to generate the rating. SVR is derived from SVM, which
solves a binary classification problem by formulating it as
a convex optimization problem [2], by introducing an ϵ-
insensitive region around the function. Adaboost is a special
case of gradient boosting which uses exponential loss. In each
iteration of Adaboost, we compute the next weak classifier by
minimizing the weighted classification error, and α is learned
adaptively. Repeat the same process until convergence [3]. The
following algorithm shows a typical workflow of Adaboost.

Algorithm 1 Adaboost algorithm [3]
Input: L, {(xxxi, yi)}ni=1, T
H = 0
wi = 1/n, i =1,2,...,n
for t = 1, 2..., T − 1 do

ht+1 = argminh∈H
∑

i:h(xxxi ̸=yi)
wi

ϵ =
∑

i:h(xxxi ̸=yi)
wi

if ϵ < 1/2 then
α = 1

2 ln
1−ϵ
ϵ

Ht+1 ← Ht + αht+1

wi =
1
Z exp(−yiHt+1(xxxi))

else
Return Ht

end if
end for

Original Common Rating: By combining SVR with Ad-
aboost, we are able to achieve a stronger ensembled learner
with low variance.

Bayesian Rating: Due to various reasons, Original Com-
mon Rating may not achieve the most trustworthy and fair
results. To try to deal with this challenge, we apply Bayesian
Rating in our prediction process as well. The following ex-
pression describes the formula:

r̂i =
NR+ niri
N + ni

(14)

where N is set to be the average number of viewers for each
anime. The newly computed rating r̂i will be treated as the
new common rating.

To briefly sum up, the common rating component,
Common Rating(anime), is obtained using a pre-trained Ad-
aBoost.SVR model, denoted as g(anime). The input to this
model is the feature vector of the anime, and the output is the
common rating. We train the model using a dataset containing
feature vectors of animes and their corresponding ratings.

Given a dataset D = (xi, yi), where xi represents the
feature vector of anime i, and yi is its corresponding rating,
the AdaBoost.SVR model g(·) is trained to learn the mapping
between the feature vectors and ratings. Once trained, the
common rating for an input anime with feature vector va is
given by:

Common Rating(a) = g(va) (15)

3) Final Prediction: We incorporate weights for both the
user rating and common rating components to compute the
final predicted rating for a user and an anime. Let ωuser

and ωcommon be the weights for the user rating and common
rating components, respectively. In our algorithm, we first set
ωuser = 0.5 and ωcommon = 0.5, which means that user’s
own rating and the general trends contribute equally to the
final anime prediction of this user. We also design a new way
to calculate ωuser, given by the following formula:

ωuser =
Ni

Ni +W
× η (16)

where W represents the average number of anime that is
rated in general, and N represents the number of anime that
is rated by user i. The hyperparameter η is used to control
the contribution of the user’s rating history. For example, if
η = 0.7, it means that the maximum percentage of contribution
for this user’s ratings is 0.7

The final predicted rating is given by the following weighted
sum:

Predicted Rating(user, anime) = α+ β (17)

where α = ωuser · User Rating(user, anime) and
β = ωcommon · Common Rating(anime). Also note
that ωcommon = 1− ωuser.

By assigning equal weights to both components, our
content-based recommendation algorithm aims to provide
personalized predictions that strike a balance between user
preferences and general trends in the anime ratings. The user
rating component ensures that the prediction is tailored to the
user’s tastes, while the common rating component captures
overall patterns in the data.

4) Cold-start Problem Solution: For a new anime, the
traditional recommendation method cannot predict the result
due to lack of rating history. Our proposed DTAR method
can solve this issue by using Adaboost.SVR to compute the
common rating of the new anime given its features. The
predicted rating generated by Adaboost.SVR then can be used
to calculate the user’s intended rating on the anime even if the
user has not watched it before.

For a new user, we use the off-the-shelf common ratings,
either original common rating or Bayesian rating, to predict
its behavior on the anime in our database.

C. Joint Recommendation

With the three recommendation algorithms (ALS II-A2,
NCF II-A3, and DTAR II-B) at hand, we use a rating-
to-score strategy to jointly use their predictions to get
the final recommendation. The mechenisim is shown in
Fig. 3. Generally, when a query regarding the userid en-
ters, each algorithm first makes their top k recommends:
AALS = {a1, a2 · · · ak}, BNCF = {b1, b2 · · · bk}, CDTAR =
{c1, c2 · · · ck}. Then, for each animation in A,B, or C, we



accumulate its score based on its ranking in the lists: 1st
position gets k points, 2nd position gets k − 1 points, etc.
At last, the joint recommender picks the top k scored items
as the final recommendation. In our implementation, we pick
k = 10.

Fig. 3. Structure of the joint recommendation component. When a query
enters, each of the three underlying recommendation algorithms gives k top
choices to help the joint recommendation algorithm make the final decision.

III. EXPERIMENTS

A. Dataset Description
We use the Kaggle Anime Recommendations Database

(KARD) [link] to train, test and verify our recommendation
algorithms. The KARD is a dataset containing information
on anime shows and their ratings. The dataset includes over
12,000 anime titles, each with features such as title, genre,
type (TV show, movie, etc.), number of episodes, and user
ratings. The ratings were collected from the MyAnimeList
website, where users can rate and review anime shows they
have watched.

We chose the KARD as our data source since it has been
widely used for machine learning and data analysis projects
related to recommendation systems. Its size and diversity make
it ideal for evaluating the accuracy and generalizability of our
work comprehensively.

B. Data Preprocessing
For Collaborative Filtering methods, only the rating data

is used, which is stored in rating.csv. The data file has three
attributes, which are user id, anime id, and rating. Some users
did not provide valid scores, which are marked as −1 in the
rating column. To achieve good performance, we pre-filter out
these invalid rows.

For Content-based methods, we need to preprocess type,
genre, episodes attributes in anime.csv, and rating column in
rating.csv to properly train the model and predict the result.

1) type: since this attribute is categorical, we need to
convert each element in type into a numerical number. For
instance, we change TV and OVA to 1 and 2 respectively. We
apply the same method to other values in this column.

2) genre: each genre for an anime is a list containing one or
more genre types. For example, anime A has genre value of
”drama” and ”romance”. We scan through the whole anime
list, make a new column for each attribute, apply one-hot
encoding to each anime, and delete the original genre column.
In the case of A, the newly created columns named drama and
romance will be set to 1, while the others will be set to 0.

3) episodes: the number of episodes for some animes
remains unknown, so we need to either get rid of them while
training and predicting or estimate them using other values.
Here, we adopt the latter approach. The unknown episodes
value is estimated by the average value for that specific type.
More precisely, let r̂tj denote a user j with unknown episodes
value whose type is t, and let T denote a set of user indices
with known episodes value whose type is t. Then,

r̂tj =
1

|T |
∑
i∈T

rti

4) rating: Different from collaborative filtering, we do not
drop animes whose rating is -1. We estimate the rating of
those animes by using equation (15). To be more precise, for
a user i, the ratings for those watched but unrated animes are
predicted by a similarity-based weighted sum from her rated
animes and the public rating.

C. ALS Hyper-parameter Tuning

We do the hyper-parameter tuning on the regularization
weight λ of ALS to find the best setting. The mean square error
over both 2000 and 5000 users with different regularization
weights are shown in Fig. 4. It is observed that λ = 0.1
achieves the lowest MSE.

Fig. 4. Plot of ALS MSE vs. regularization parameter over 2000 and 5000
users.

D. Performance Comparison

We use the mean square error (MSE) to evaluate the
accuracy of the three implemented methods. To test their
performance under different data sizes, we run them on the

https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database


first 2000 users and first 5000 users subsets. The results are
summarized in table 1.

TABLE I
MEAN SQUARE ERROR (MSE) FOR THREE MODELS

Method First 2000 Users First 5000 Users
ALS 1.45 1.36
NCF 1.92 1.89
DTAR 1.77 1.58

From the table, we find that ALS method achieves the
lowest MSE both for the first 2000 users and first 5000
users, while the content-based method achieves the second
best performance.

Figure 5 illustrates DTAR without applying Baysian rating
under different parameter settings. Specifically, in setting1,
ωuser = 0.5; in setting2, the hyperparameter η = 0.7;
in setting3, the hyperparameter η = 0.5; in setting4, the
hyperparameter η = 0.2.

Fig. 5. The experiment result of DTAR without Bayesian under different
settings.

Figure 6 illustrates DTAR with Bayesian rating. To be
more specific, in setting1, ωuser = 0.5; in setting2, the
hyperparameter η = 0.7; in setting3, the hyperparameter
η = 0.5.

Fig. 6. The experiment result of DTAR with Bayesian under different settings.

From the figures, we find that without Bayesian rating,
the minimum MSE is achieved when we set ωuser = 0.5.
Even though, the MSEs under the other three settings do not
deviate too much from it. Another observation is that when we
decrease η, the performance will also become worse, meaning
that the user’s own ratings are more crucial in predicting
his/her own preferences. The similar situation also demonstrate
in the experiment with Bayesian rating.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced an animation recommendation
system. Two types of popular recommendation algorithms,
collaborative filtering methods and content-based methods,
are investigated, implemented, and tested. We successfully
adapted these algorithms on the Kaggle Anime Recommenda-
tions Database (KARD), which is a widely used dataset with
the appropriate size and good diversity. Experiments show that
our algorithms have good prediction accuracy.

We will continually put effort into this project to do more
comprehensive experiments on the algorithms and try to im-
prove their performances. Besides, we also plan to implement
a user interface for piratical interactions and apply it to
animation websites such as BiliBili, help to solve the real-
world problems.

V. CONTRIBUTION

Details of contribution can be found below.
1) Dongzhuyuan Lu (24%): works on content-based algo-

rithm.
2) Junhao Ran (24%): works on content-based algorithm.
3) Taimeng Fu (24%): works on collaborative filtering

algorithm.
4) Yifan Wu (24%): works on collaborative filtering algo-

rithm.
5) Yabin Cheng (4%): works on collaborative filtering

algorithm.
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