Self-Trained Decision Transformer

Dongzhuyuan Lu, Yening He
University of Waterloo
{d721u, y37he}@uwaterloo.ca

Abstract

We introduce a framework that trains a Decision Transformer (DT) using a dataset
with part of its data collected by the DT itself. We term this DT as a Self-Trained
Decision-Transformer. STDT enables a DT to train in an Offline Reinforcement
Learning (RL) environment where data are scarce or existing data exhibit poor
quality. Our project consists of three main parts: the first part involves reproducing
the code from the original DT manuscript and applying it to racetrack-v0 envi-
ronment from Assignment 2, and the second part focuses on ways to improve DT,
conducting extensive experiments on STDT as well as an improved version of DT,
Elastic Decision Transformer (EDT). We found that DT does not perform well in
the environment such as hopper-medium-replay as indicated in the origianl work,
and STDT performs better than DT in racetrack-v0 environment. Finally, we per-
form a comparative analysis and discussion on the improvements and their results.
The codes are available here: https://github.com/Tim-Lu-cuhksz/STDT.

1 Introduction

In RL, an agent is trained to learn an optimal policy to achieve the maximum sum of returns [[13]]. With
deep neural networks integrated into RL, it has demonstrated superior performance in various domains
such as playing games [[7, [12] and robotics [15]. One of the areas of RL is Offline RL [|6] where an
agent is trained using a sequence of pre-collected data rather than interacting with the environment in
real-time. Recent advancements in transformers [[14] have sparked a series of work to model RL as a
sequence of states, actions, and rewards. As opposed to traditional RL methods which often rely on
value function approximation and Bellman Backup [[13]], the novel transformer-based approach trains
a transformer model, as widely used in language and vision tasks [3], on pre-collected experience via a
sequence modeling objective, and this was adopted in DT [2]]. DT feeds a sequence of states, actions,
and rewards into a causal Transformer [9] that leverages masked self-attention layers to predict
future actions. This architecture solves the credit assignment problem [8] by implicitly capturing
the action-reward relationships through the Query-Key similarities embedded in the self-attention
layers [14]. While traditional RL approaches often encounter challenges such as instabilities caused
by bootstrapping in temporal difference methods [[13]], short-sighted decision making introduced by
reward discounting [2]], and difficulty in managing delayed or sparse rewards [2], DT aims to eliminate
these obstacles by using a sequence modeling framework, leveraging autoregressive models to extract
optimal policies from offline datasets without direct environment interaction. DT addresses several
key challenges in RL including robustness to sparse or delayed reward signals and reliable learning
in offline RL settings, using fixed datasets without additional exploration [2]. Our project reproduces
their work on HighwayEnv (https://github.com/Farama-Foundation/HighwayEnv) to test
and verify its robustness.

Several follow-up works have made an attempt to improve the original DT. One of them is the Elastic
Decision Transformer (EDT), which takes a variable length of the traversed trajectory as the input so
as to ensure the quality of the trajectory fed into the DT architecture [[16]. It approximates a value
maximizer and “stitch” a path of optimal length [[16]. Unlike DT, which uses a fixed history length,

ECE 750 T40 Final Report: Submitted to Prof. Mark Crowly


https://github.com/Tim-Lu-cuhksz/STDT
https://github.com/Farama-Foundation/HighwayEnv

EDT dynamically adjusts the history length during inference based on the quality of the current
trajectory, enabling more adaptive decision-making. EDT varies the history length during inference,
allowing it to optimize decisions based on the quality of the current trajectory. It also uses expectile
regression, which estimates the maximum achievable return for different history lengths, leading to
improved action inference [16]]. While DT uses a fixed history length, EDT’s dynamic mechanism
introduces flexibility, making it more effective in complex environments requiring trajectory stitching.
We reproduce this work and conduct experiments on D4RL [4] and compare its results with the
original DT.

We introduce the Self-Trained Decision Transformer (STDT) which is a DT trained on a collection of
fixed-size and scarce Offline data, and then it becomes a data collector that generates trajectories that
are then fed into itself for subsequent training. This approach is inspired by the self-play strategy
adopted in [12] where a RL Go agent acts as its opponent to play against itself. In our project,
however, the agent does not play against itself but with the environment. We expect that the DT could
not only learn the old policy but surpass its performance from its interaction with the environment.
Experiments have been conducted in the racetrack-v0 environment from HighwayEnv to verify its
effectiveness.

Our Contributions: 1) We use a pre-trained Proximal Policy Optimization (PPO) model [[11}[10]
to collect Offline RL data from the racetrack-v0 environment which could be used in future work
as a benchmark to test Offline RL methods. 2) We introduce Self-Trained Decision Transformer,
a framework of Offline RL that addresses the challenge of scarce and poor Offline data. 3) Our
experimental evaluation suggests that SDTD can achieve better performance than the original DT in
racetrack-v0 environment. We conduct experiments on EDT, an improved version of DT as well.

2 Preliminaries

2.1 Offline Reinforcement Learning

In this project, we consider training an agent in a Markov decision process MDP) described by
(S, A, P, R) where there is a sequence of states s € S, actions a € A. In a model-based RL setting,
the world dynamics P(s |s, ) and the reward function r = R(s, a) are given so that the agent can
update its Q-values via Bellman Backup [[13]]. We characterize trajectories as a sequence of tokens
which can be structured as follows:

T = (Rl,sl,al,RQ,SQ,QQ, .. '7RT75TaaT)

where R, is the return-to-go, s, represents the state, and a; denotes the action at time step ¢. The
ultimate goal is to train an agent that maximizes the expected (discounted) sum of returns.

In Offline RL, only a fixed-size dataset is available to train the agent and it cannot interact with the
environment. In our setting, we are provided with a fixed-size dataset and able to interact with the
environment as well. We would like to use the limited trajectories to train a preliminary model and
generate new trajectories based on that. We repeat the process by appending the newly generated
trajectories for future training.

2.2 Decision Transformer

Reward Representation Instead of learning from raw rewards, DT leverages return-to-go Ry, the
cumulative sum of future rewards:
T
Ry=) v

t'=t
This enables DT to condition its predictions on desired performance outcomes.

Model Architecture The last K timesteps of the target trajectory are fed into DT, yielding a total of
3K tokens. DT uses a Transformer-based structure with causal masking for autoregressive predictions.
Inputs (states, actions, returns-to-go) are projected into high-dimensional embeddings, processed
through the Transformer to predict future actions. Each layer is normalized [1]] before being fed into
the next layer.


https://github.com/Farama-Foundation/HighwayEnv

Training and Loss Function The model is trained using the offline trajectory dataset. The loss is
computed as:

1 K
L= EZH%—MF

t=1

Where K is the context length and a; is the predicted action.

2.3 Elastic Decision Transformer

EDT uses similar trajectory representation as in DT. However, EDT introduces a dynamic history
length mechanism, allowing the trajectory length 7" to be optimized.

Dynamic History Length EDT determines the optimal history length 7" by solving:

T* = argmaxyp R (1r)

where R;(77) represents the expected return for a given history length 7. This enables EDT to
prioritize high-quality segments of the trajectory.

Expectile Regression To estimate the maximum return R;, EDT uses expectile regression:

min E [La (Rt — Rt)] , Lao(z)=|a— Ilz<0|x2

t

where « is the expectile level, emphasizing higher returns over lower ones.

Training Objective EDT’s training objective builds upon DT with an additional loss term for
estimating maximum returns:

LEDT = CTLreturn + Lstate + Laction + Lmax

where L, represents the loss for expectile regression.

Inference During inference, EDT searches for the optimal history length 7™ that maximizes R; and
truncates the trajectory to length 7™ and predicts the next action. EDT’s dynamic history adjustment
improves adaptability and decision-making, while DT relies on a fixed history length.

3 Methodology

In this section, we present Self-Trained Decision Transformer (STDT), a framework that trains a DT
using a limited and fixed dataset, and then new trajectories are generated by the pre-trained DT. We
use the newly generated trajectories to “self-train” our DT model at the end of the iteration. Note
that we only keep episodes of high quality (i.e., the reward should exceed a predefined threshold) to
merge into the original dataset. We repeat this process to “self-train” the DT model and expect that
DT could learn effective policies beyond what the first set of trajectories demonstrated.

Architecture We adopt the Generative-Pretrained Transformer (GPT) [9] as used in the original DT
[2] manuscript. The model learns a linear layer for each state, action, and return-to-go modality, which
are projected to the embedding layer. The feature vectors are passed through masked self-attention
layers during training, and a future action token is predicted. Our proposed STDT is based on the
GPT architecture to iteratively generate new trajectories. A basic framework is visualized in figure|T]
The psuedo-code is also provided in algorithm 1]



Initial Dataset | «—

Decision Trajectories
; : Mergin
Trajectories Transformer ging
GeneraM\
R(],S(], ap ... R(],So, ap ... RD,S‘], ag.. | —
To T eeeees Tn-1

Figure 1: STDT Framework

Algorithm 1 Self-Trained Decision Transformer Pseudo-code

Input: D, max_steps
Output: DT parameters 0 pp
Initialize parameters 6 o for DT
140
for (R, s, a, t) in dataloader(D) do
a_pred = DecisionTransformer(R, s, a, t)
loss = mean((a_pred — a)?)
Update 6 pr by minimizing loss using Stochastic Gradient Descent (SGD)
Dgyen < Generate new trajectories using the updated DT
D < merge(D, Dyen,)
if © > max_steps then break
end if
1 1+1
end for
return 6 pr

Training The fixed dataset is generated by a PPO model trained in the racetrack-v0 environment
from HighwayEnv. We use PPO because racetrack-v0 is continuous by default and PPO simplifies
the policy optimization process by introducing a clipping mechanism to prevent excessive updates
[11]]. More technical details can be found in[4.3]

Evaluation As in [2], we specify a target return to STDT based on what we observe from the given
dataset. For instance, we could use the maximum return among all trajectories from the initial dataset.
After each update of the dataset, we re-compute the target reward again in case a better policy is
learned.

4 Experiments

We first reproduce DT and EDT on D4RL environments in[4.1]to test whether the two algorithms are
indeed effective as indicated in the original work. In[4.2] we test the original DT in racdtrack-v0
environment and compare its results with PPO. In addition to that, we verify the effectiveness of
STDT in racetrack-v0 environment in[4.3]

4.1 Reproduction of DT & EDT on D4RL

We report the reproduction results (denoted by Repro.) and compare them with the original results in
the table .1 We keep the setting the same as that in [2} [16] except that we reduce the number of
training and evaluation rounds due to the limit of computational resources.

Fig[2]shows the training loss of mean action of EDT evaluated on D4RL environment. The training
resutls of DT can be found in fig[7]to fig[T2)in appendix[A] We observe that our reproduction result



Dataset DT DT (Repro.) EDT EDT (Repro.)
hopper-medium 67.6£1.0 | 58.0+11.3 | 63.0£5.8 58.2£2.3
hopper-medium-replay 82770 | 664£9.1 | 89.0£8.3 87.8£2.3
walker-medium 740£14 | 686+11.3 | 72.8£6.2 70.24+0.1
walker-medium-replay 66.6 +3.0 | 63.4+12.5 | 74.8+4.9 71.6 £ 0.6
halfcheetah-medium 4264+0.1 | 41.14+11.2 | 42.5£0.9 42.1£0.6
halfcheetah-medium-replay || 36.6 £ 0.8 | 35.9+6.7 | 37.8 1.5 37.1+£0.6

Table 1: Baseline comparisions on D4RL [4] tasks. DT is trained for 10 iterations and is evaluated by
100 episodes. EDT is trained for 500 iterations.

of DT in hopper-medium-replay is much lower than that in the original DT. However, this complies
with the result in the manuscript of EDT [16]. Our reproduction results indicate a higher variance
evaluated by DT. We believe that if we increase the number of evaluation rounds, the variance would
be as low as that in DT. The training loss of mean return and state of EDT can be found in fig[13]
and [14]in appendix [A] The figures indicates that the loss of mean action, return, and state decreases
gradually across different datasets. The mean action loss converges after 100 training steps.

training/mean_action_loss

— halfcheetah-medium-replay — hopper-medium-replay — walker2d-medium = halfcheetah-medium = hopper-medium

Figure 2: Mean Action Loss of EDT on D4RL

We also compare the performance of EDT across different datasets when the number of training steps
reaches 250 and 500 as depicted in fig ?? in appendix [A] In general, EDT performs better with more
training steps.

hopper DT shows generally better performance than the traditional Offline RL methods such as
Conservative Q-learning [5]. EDT shows strong performance on the replay datasets, effectively
leveraging its trajectory-stitching capability to enhance decision-making.

walker2d The results indicate that EDT demonstrates its strengths on replay datasets, where its
dynamic history length mechanism is highly effective for handling sub-optimal data. However, its
improvement is less pronounced in other environments, such as halfcheetah, suggesting room for
further refinement in the mechanism.

halfcheetah While the halfcheetah environment demonstrates limited improvement with EDT in
the original results, the significant discrepancies in reproduced results highlight potential differences
in experimental conditions. Allin all, EDT demonstrates significant improvements over DT, especially
in replay datasets, showcasing its ability to effectively handle sub-optimal trajectories. However, the
observed deviations in certain reproduced results highlight the need for careful setup and validation
in experiments. Overall, EDT’s dynamic mechanisms provide a robust framework for enhancing
offline reinforcement learning tasks.



4.2 Reproduction of DT on HighwayEnv

We train a PPO policy via Stable-Baselines3 [10] in racetrack-v0 environment and use it to generate
256 episodes as our Offline dataset. We test the effectiveness of DT in racetrack-v0 from High-
wayEnv and we increase the difficulty level by adding more vehicles on the road as shown in fig[3]
Specifically, we set the number of vehicles to 5 on the road and enable lateral actions only. Due to
limited computational resources, we decrease the number of training steps of DT from 10,000 to
1,000. We keep other settings the same as that in DT.

& Highway-env - X

Figure 3: racetrack-v0 Environment

Since the gradient is based on the action loss as in [2]], we show the training action error of DT in
racetrack-v0. Fig ] shows that the action error decreases over time, indicating that DT is learning to
behave as similarly as the PPO model that generates the dataset.

training/action_error

0.012 \
0.01
0.008
0.006
0.004

0.002 Step
T

Figure 4: Training Error of DT in racetrack-v0 Environment

We set the target return to 1500 as the maximum return in an episode in the Offline dataset is 1507.
The mean return evaluated after training for 10 iterations is shown in fig[5] The mean return is around
250 during evaluation. The return mean fluctuates during training as well, indicating that DT fails
(crashes) quickly in some episodes. But in general, DT outperforms the PPO policy (achieves a mean
return of about 150 after 40,000 timesteps of training as indicated in fig[T5]in appendix [A]), which is
used to generate our Offline dataset.

4.3 STDT on HighwayEnv

We adopt the same Offine dataset as that used in evaluating DT. The number of epochs we use for
training STDT is set to 5, each of which contains 4 training iterations. We generate 15 episodes in
each epoch and use 500 as the training steps, different from DT where we use 1,000. As before, the
return-to-go is set to 1500. Fig[6] presents the evaluation result of STDT on racetrack-v0. The mean
return of STDT is about 350 after training while that of DT achieves only around 250, indicating the



evaluation/target_1500_return_mean

250

200

Step

Figure 5: Mean Return of DT in racetrack-v0 Environment

effectiveness of STDT. The training result can be found in fig[T6]in appendix [A] We also observe
that the performance of STDT fluctuates as in[6] potentially due to the quality of newly generated
trajectories.

evaluation/target_1500_return_mean

400
350
300
250
200
Step
5

10 15

Figure 6: Mean Return of STDT in racetrack-v0 Environment

5 Discussions & Limitations

DT demonstrates superior or comparable performance over the state-of-the-art Offline RL methods.
However, we observe that DT is to some extent limited by the quality of the Offline dataset. In our
experiments, DT learns well following the Offline policy by struggles to learn better behavior. We
believe that more training steps are necessary to reveal more meaningful patterns.

EDT represents a significant improvement over DT by introducing a dynamic history length mecha-
nism. This innovation enables more effective trajectory stitching and superior performance in offline
RL tasks, bridging the gap between DT and Q-learning-based methods. By addressing DT’s limita-
tions, EDT sets a new benchmark for sequence modeling in reinforcement learning. Our experiment
results show that EDT performs better but to limited extent.

STDT performs better than the original DT by a small margin, which to some extend shows the
effectiveness of STDT. In qualitative analysis, however, we found that STDT does not overcome what
the PPO policy has sufferecﬂ For example, overtaking vehicles while remaining on track appears to
be a challenge for both the PPO policy and STDT.

Limitations 1) Even though STDT generates new trajectories to “self-train” itself, the trajectories
may lack diversity as compared to the original dataset. In other words, STDT suffers from generating
meaningfully novel trajectories that tackles the challenges faced by the policy used to generate the
Offline dataset. 2) Since we only enable lateral actions, the agent could not handle the situations
where both lanes are occupied by other vehicles, leading to collisions. 3) Due to limited computational
resources, we are only able to train DT and STDT on HighwayEnv for a small number of epochs,

'Videos can be found on our Github repositories: https://github. com/Tim-Lu- cuhksz/STDT


https://github.com/Tim-Lu-cuhksz/STDT

which may not reveal meaningful patterns. In addition to that, the number of episodes we generate in
each epoch is limited as well.

6 Conclusions & Future Work

In this project, we introduce the framework of STDT and reproduce the code from the original DT and
EDT work and test their effectiveness on D4RL environments. We found out that our reproduction
result of DT on hopper-medium-replay appears to be much lower than that in DT but aligns with
the result in EDT paper. We also applies DT on racetrack-v0 from HighwayEnv and observes that
DT manages to learn the PPO policy used to generate the Offline dataset effectively in less training
steps than trained in D4RL environment. Built upon DT, STDT demonstrates better performance on
racetrack-v( but is constrained by the ability of PPO as well.

Future work could potentially address the above-mentioned issues of STDT by introducing more ex-
ploration when generating the new trajectories. More experiments should be conducted on racetrack-
v0 by increasing the number of training epochs, the episodes generated in each epoch, and enabling
longitudinal actions to test the robustness of STDT.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.
arXiv:1607.06450 [stat].

[2] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning
via Sequence Modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 15084—
15097. Curran Associates, Inc., 2021.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learning Representations, 2021.

[4] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
Deep Data-Driven Reinforcement Learning, February 2021. arXiv:2004.07219 [cs].

[5] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning
for Offline Reinforcement Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1179-1191. Curran Associates, Inc., 2020.

[6] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems, November 2020. arXiv:2005.01643 [cs].

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, December
2013. arXiv:1312.5602 [cs].

[8] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier

Pietquin, and Laura Toni. A Survey of Temporal Credit Assignment in Deep Reinforcement
Learning, July 2024. arXiv:2312.01072 [cs].

[9] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language
Understanding by Generative Pre-Training.

[10] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. arXiv:1707.06347 [cs].



[12]

[13]

[14]

[15]

[16]

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359,
October 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive
computation and machine learning series. The MIT Press, Cambridge, Massachusetts, second
edition edition, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learning Generalizable Dexterous Manipu-
lation from Human Grasp Affordance. In Karen Liu, Dana Kulic, and Jeff Ichnowski, editors,
Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine
Learning Research, pages 618—-629. PMLR, December 2023.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic Decision Transformer. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 18532—18550. Curran Associates, Inc.,
2023.



A Appendix / supplemental material

training/action_error training/train_loss_mean training/train_loss_std

training/train_loss_std

— gym-experiment-halfcheetah-medium-replay-669473 % - g

Step

Figure 8: Training Loss of DT on halfcheetah-medium-replay

training/action_error training/train_loss_mean training/train_loss_std

0.12 0.06 \
0.08 \
s
0.0 -

Figure 9: Training Loss of DT on hopper-medium

10



training/train_loss_std training/train_loss_mean training/action_error

= gym-experiment-hopper-medium-replay-703449 % = gym-experiment-hopper-medium-replay-703449 = gym-experiment-hopper-medium-replay-703449 %

Step

Figure 10: Training Loss of DT on hopper-medium-replay

training/train_loss_std training/action_error training/train_loss_mean
0.065
012
00
0.055 ot
oo 0.08
0.045
0.06
0.04
Stey Stey Stey
P e ) 0.04 P
2 4 6 8 o 2 4 6 8 2 4 5 s

Figure 11: Training Loss of DT on walker2d-medium

training/action_error training/train_loss_mean training/train_loss_std
02
01
018
008
0.16
006
014
o 0.04
01 o0
e step step
4 s 2 4 6 s 0 2 4 6 8

Figure 12: Training Loss of DT on walker2d-medium-replay

training/mean_ret_loss

lker2d-medium — halfcheetah-medium — di N

hopper-medium-replay — halfcheetah-med play — hopper-med

Figure 13: Mean Return Loss of EDT on D4RL

11



training/mean_state_loss

wopper-medium-replay — halfcheetah-medium-replay — hop play — walker2d-medium — halfcheetah-medium — hopy .

= Step

0 100 200 300 400

rollout/ep_rew_mean El 1;[ i :
100
50

10k 20k a0k 40960 *

E4
Run* Smoothed Value Step Relative

@ PPO_6 143.6779 157.6643 40960 21.08 min

Figure 15: Mean Return of PPO in racetrack-v0 Environment

training/action_error

0.02
0.015
0.01

0.005

st
.

0 5 10 15

Figure 16: Mean Action Error of STDT in racetrack-v0 Environment



	Introduction
	Preliminaries
	Offline Reinforcement Learning
	Decision Transformer
	Elastic Decision Transformer

	Methodology
	Experiments
	Reproduction of DT & EDT on D4RL
	Reproduction of DT on HighwayEnv
	STDT on HighwayEnv

	Discussions & Limitations
	Conclusions & Future Work
	Appendix / supplemental material

